How to do it...

Go through the following steps to segment the skins using scikit-learn's GaussianMixture:

  1. Read the training dataset that you downloaded as a pandas DataFrame:
df = pd.read_csv('images/Skin_NonSkin.txt', header=None, delim_whitespace=True)df.columns = ['B', 'G', 'R', 'skin']

The next screenshot shows what the first few rows of the data look like:

  1. Plot the distribution of the RGB values for skin and nonskin examples separately, using boxplot:
g = sns.factorplot(data=pd.melt(df, id_vars='skin'), \    x='variable', y='value', hue='variable', col='skin', \    kind='box', palette=sns.color_palette("hls", 3)[::-1])plt.show()

If you ...

Get Python Image Processing Cookbook now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.