Skip to Main Content
Python Machine Learning By Example
book

Python Machine Learning By Example

by Yuxi (Hayden) Liu, Ivan Idris
May 2017
Beginner to intermediate content levelBeginner to intermediate
254 pages
6h 24m
English
Packt Publishing
Content preview from Python Machine Learning By Example

Topic modeling

Topics in natural language processing don't exactly match the dictionary definition and correspond to more of a nebulous statistical concept. We speak of topic models and probability distributions of words linked to topics, as we know them. When we read a text, we expect certain words appearing in the title or the body of the text to capture the semantic context of the document. An article about Python programming will have words such as class and function, while a story about snakes will have words such as eggs and afraid. Documents usually have multiple topics, for instance, this recipe is about topic models and non-negative matrix factorization, which we will discuss shortly. We can, therefore, define an additive model for ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning by Example - Third Edition

Python Machine Learning by Example - Third Edition

Yuxi (Hayden) Liu
Python: Deeper Insights into Machine Learning

Python: Deeper Insights into Machine Learning

Sebastian Raschka, David Julian, John Hearty
Python: Real World Machine Learning

Python: Real World Machine Learning

Prateek Joshi, John Hearty, Bastiaan Sjardin, Luca Massaron, Alberto Boschetti

Publisher Resources

ISBN: 9781783553112Supplemental Content