Looking at different performance evaluation metrics
In the previous sections and chapters, we evaluated our models using the model accuracy, which is a useful metric to quantify the performance of a model in general. However, there are several other performance metrics that can be used to measure a model's relevance, such as precision, recall, and the F1-score.
Reading a confusion matrix
Before we get into the details of different scoring metrics, let's print a so-called confusion matrix, a matrix that lays out the performance of a learning algorithm. The confusion matrix is simply a square matrix that reports the counts of the true positive, true negative, false positive, and false negative predictions of a classifier, as shown in the following ...
Get Python Machine Learning now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.