Chapter 11. Working with Unlabeled Data – Clustering Analysis

In the previous chapters, we used supervised learning techniques to build machine learning models using data where the answer was already known—the class labels were already available in our training data. In this chapter, we will switch gears and explore cluster analysis, a category of unsupervised learning techniques that allows us to discover hidden structures in data where we do not know the right answer upfront. The goal of clustering is to find a natural grouping in data such that items in the same cluster are more similar to each other than those from different clusters.

Given its exploratory nature, clustering is an exciting topic and, in this chapter, you will learn about the ...

Get Python Machine Learning now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.