Building a logistic regression classifier
Despite the word regression being present in the name, logistic regression is actually used for classification purposes. Given a set of datapoints, our goal is to build a model that can draw linear boundaries between our classes. It extracts these boundaries by solving a set of equations derived from the training data.
How to do it…
- Let's see how to do this in Python. We will use the
logistic_regression.py
file that is provided to you as a reference. Assuming that you imported the necessary packages, let's create some sample data along with training labels:import numpy as np from sklearn import linear_model import matplotlib.pyplot as plt X = np.array([[4, 7], [3.5, 8], [3.1, 6.2], [0.5, 1], [1, 2], [1.2, ...
Get Python Machine Learning Cookbook now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.