Skip to Content
Python Machine Learning Cookbook
book

Python Machine Learning Cookbook

by Prateek Joshi, Vahid Mirjalili
June 2016
Beginner to intermediate
304 pages
6h 24m
English
Packt Publishing
Content preview from Python Machine Learning Cookbook

Building Hidden Markov Models for sequential data

The Hidden Markov Models (HMMs) are really powerful when it comes to sequential data analysis. They are used extensively in finance, speech analysis, weather forecasting, sequencing of words, and so on. We are often interested in uncovering hidden patterns that appear over time.

Any source of data that produces a sequence of outputs could produce patterns. Note that HMMs are generative models, which means that they can generate the data once they learn the underlying structure. HMMs cannot discriminate between classes in their base forms. This is in contrast to discriminative models that can learn to discriminate between classes but cannot generate data.

Getting ready

For example, let's say that we ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning Cookbook - Second Edition

Python Machine Learning Cookbook - Second Edition

Giuseppe Ciaburro, Prateek Joshi
Python: Real World Machine Learning

Python: Real World Machine Learning

Prateek Joshi, John Hearty, Bastiaan Sjardin, Luca Massaron, Alberto Boschetti

Publisher Resources

ISBN: 9781786464477Supplemental Content