Best practice 18 – modeling on large-scale datasets

We have gained experience working with large datasets in Chapter 8, Scaling Up Prediction to Terabyte Click Logs. There are a few tips that can help you model on large-scale data more efficiently.

First, start with a small subset, for instance, a subset that can fit on your local machine. This can help speed up early experimentation. Obviously, you don't want to train on the entire dataset just to find out whether SVM or random forest works better. Instead, you can randomly sample data points and quickly run a few models on the selected set.  

The second tip is choosing scalable algorithms, such as logistic regression, linear SVM, and SGD-based optimization. This is quite intuitive.

Once ...

Get Python Machine Learning By Example - Second Edition now with O’Reilly online learning.

O’Reilly members experience live online training, plus books, videos, and digital content from 200+ publishers.