Skip to Content
Python Machine Learning By Example - Second Edition
book

Python Machine Learning By Example - Second Edition

by Yuxi (Hayden) Liu
February 2019
Beginner to intermediate
382 pages
10h 1m
English
Packt Publishing
Content preview from Python Machine Learning By Example - Second Edition

Voting and averaging

This is probably the most easily understood type of model aggregation. It just means the final output will be the majority or average of prediction output values from multiple models. It's also possible to assign different weights to each model in the ensemble, for example, some models might consider two votes. However, combining the results of models that are highly correlated to each other doesn't guarantee spectacular improvements. It's better to somehow diversify the models by using different features or different algorithms. If we find that two models are strongly correlated, we may, for example, decide to remove one of them from the ensemble and increase proportionally the weight of the other model.

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning by Example - Third Edition

Python Machine Learning by Example - Third Edition

Yuxi (Hayden) Liu
Python Machine Learning, Second Edition - Second Edition

Python Machine Learning, Second Edition - Second Edition

Sebastian Raschka, Jared Huffman, Vahid Mirjalili, Ryan Sun

Publisher Resources

ISBN: 9781789616729Supplemental Content