Skip to Content
Python Machine Learning - Third Edition
book

Python Machine Learning - Third Edition

by Sebastian Raschka, Vahid Mirjalili
December 2019
Beginner to intermediate
772 pages
19h 20m
English
Packt Publishing
Content preview from Python Machine Learning - Third Edition

5

Compressing Data via Dimensionality Reduction

In Chapter 4, Building Good Training Datasets – Data Preprocessing, you learned about the different approaches for reducing the dimensionality of a dataset using different feature selection techniques. An alternative approach to feature selection for dimensionality reduction is feature extraction. In this chapter, you will learn about three fundamental techniques that will help you to summarize the information content of a dataset by transforming it onto a new feature subspace of lower dimensionality than the original one. Data compression is an important topic in machine learning, and it helps us to store and analyze the increasing amounts of data that are produced and collected in the modern ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Introduction to Machine Learning with Python

Introduction to Machine Learning with Python

Andreas C. Müller, Sarah Guido
Python Machine Learning, Second Edition - Second Edition

Python Machine Learning, Second Edition - Second Edition

Sebastian Raschka, Jared Huffman, Vahid Mirjalili, Ryan Sun

Publisher Resources

ISBN: 9781789955750Supplemental Content