Skip to Content
Python: Real-World Data Science
book

Python: Real-World Data Science

by Dusty Phillips, Fabrizio Romano, Phuong Vo.T.H, Martin Czygan, Robert Layton, Sebastian Raschka
June 2016
Beginner to intermediate content levelBeginner to intermediate
1255 pages
29h 1m
English
Packt Publishing
Content preview from Python: Real-World Data Science

Linear algebra with NumPy

Linear algebra is a branch of mathematics concerned with vector spaces and the mappings between those spaces. NumPy has a package called linalg that supports powerful linear algebra functions. We can use these functions to find eigenvalues and eigenvectors or to perform singular value decomposition:

>>> A = np.array([[1, 4, 6],
    [5, 2, 2],
    [-1, 6, 8]])
>>> w, v = np.linalg.eig(A)
>>> w                           # eigenvalues
array([-0.111 + 1.5756j, -0.111 – 1.5756j, 11.222+0.j])
>>> v                           # eigenvector
array([[-0.0981 + 0.2726j, -0.0981 – 0.2726j, 0.5764+0.j],
    [0.7683+0.j, 0.7683-0.j, 0.4591+0.j],
    [-0.5656 – 0.0762j, -0.5656 + 0.00763j, 0.6759+0.j]])

The function is implemented using the geev Lapack routines that compute the eigenvalues and eigenvectors ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python for Data Science

Python for Data Science

Yuli Vasiliev

Publisher Resources

ISBN: 9781786465160