Online learning
In some cases, we don't have all of the data we need for training before we start our learning. Sometimes, we are waiting for new data to arrive, perhaps the data we have is too large to fit into memory, or we receive extra data after a prediction has been made. In cases like these, online learning is an option for training models over time.
An introduction to online learning
Online learning is the incremental updating of a model as new data arrives. Algorithms that support online learning can be trained on one or a few samples at a time, and updated as new samples arrive. In contrast, algorithms that are not online require access to all of the data at once. The standard k-means algorithm is like this, as are most of the algorithms ...
Get Python: Real-World Data Science now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.