Chapter 7. Combining Different Models for Ensemble Learning

In the previous chapter, we focused on the best practices for tuning and evaluating different models for classification. In this chapter, we will build upon these techniques and explore different methods for constructing a set of classifiers that can often have a better predictive performance than any of its individual members. You will learn how to:

  • Make predictions based on majority voting
  • Reduce overfitting by drawing random combinations of the training set with repetition
  • Build powerful models from weak learners that learn from their mistakes

Learning with ensembles

The goal behind ensemble methods is to combine different classifiers into a meta-classifier that has a better generalization ...

Get Python: Real-World Data Science now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.