Skip to Content
Python: Real World Machine Learning
book

Python: Real World Machine Learning

by Prateek Joshi, John Hearty, Bastiaan Sjardin, Luca Massaron, Alberto Boschetti
November 2016
Beginner to intermediate
941 pages
21h 55m
English
Packt Publishing
Content preview from Python: Real World Machine Learning

Extracting statistics from time series data

One of the main reasons that we want to analyze time series data is to extract interesting statistics from it. This provides a lot of information regarding the nature of the data. In this recipe, we will take a look at how to extract these stats.

How to do it…

  1. Create a new Python file, and import the following packages:
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    
    from convert_to_timeseries import convert_data_to_timeseries
  2. We will use the same text file that we used in the previous recipes for analysis:
    # Input file containing data
    input_file = 'data_timeseries.txt'
  3. Load both the data columns (third and fourth columns):
    # Load data data1 = convert_data_to_timeseries(input_file, 2) ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Interpretable Machine Learning with Python

Interpretable Machine Learning with Python

Serg Masís
Large Scale Machine Learning with Python

Large Scale Machine Learning with Python

Luca Massaron, Alberto Boschetti, Bastiaan Sjardin

Publisher Resources

ISBN: 9781787123212Supplemental ContentPurchase Link