Skip to Content
Python: Real World Machine Learning
book

Python: Real World Machine Learning

by Prateek Joshi, John Hearty, Bastiaan Sjardin, Luca Massaron, Alberto Boschetti
November 2016
Beginner to intermediate
941 pages
21h 55m
English
Packt Publishing
Content preview from Python: Real World Machine Learning

Stacked Denoising Autoencoders

While autoencoders are valuable tools in themselves, significant accuracy can be obtained by stacking autoencoders to form a deep network. This is achieved by feeding the representation created by the encoder on one layer into the next layer's encoder as the input to that layer.

Stacked denoising autoencoders (SdAs) are currently in use in many leading data science teams for sophisticated natural language analyses as well as a hugely broad range of signals, image, and text analysis.

The implementation of a SdA will be very familiar after the previous chapter's discussion of deep belief networks. The SdA is used in much the same way as the RBMs in our deep belief networks were used. Each layer of the deep architecture ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Interpretable Machine Learning with Python

Interpretable Machine Learning with Python

Serg Masís
Large Scale Machine Learning with Python

Large Scale Machine Learning with Python

Luca Massaron, Alberto Boschetti, Bastiaan Sjardin

Publisher Resources

ISBN: 9781787123212Supplemental ContentPurchase Link