Skip to Content
Python: Real World Machine Learning
book

Python: Real World Machine Learning

by Prateek Joshi, John Hearty, Bastiaan Sjardin, Luca Massaron, Alberto Boschetti
November 2016
Beginner to intermediate
941 pages
21h 55m
English
Packt Publishing
Content preview from Python: Real World Machine Learning

Chapter 4. Convolutional Neural Networks

In this chapter, you'll be learning how to apply the convolutional neural network (also referred to as the CNN or convnet), perhaps the best-known deep architecture, via the following steps:

  • Taking a look at the convnet's topology and learning processes, including convolutional and pooling layers
  • Understanding how we can combine convnet components into successful network architectures
  • Using Python code to apply a convnet architecture so as to solve a well-known image classification task

Introducing the CNN

In the field of machine learning, there is an enduring preference for developing structures in code that parallel biological structures. One of the most obvious examples is that of the MLP neural network, ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Interpretable Machine Learning with Python

Interpretable Machine Learning with Python

Serg Masís
Large Scale Machine Learning with Python

Large Scale Machine Learning with Python

Luca Massaron, Alberto Boschetti, Bastiaan Sjardin

Publisher Resources

ISBN: 9781787123212Supplemental ContentPurchase Link