Including non-linearity in SGD
The fastest way to insert non-linearity into a linear SGD learner (and basically a no-brainer) is to transform the vector of the example received from the stream into a new vector including both power transformations and a combination of the features upto a certain degree.
Combinations can represent interactions between the features (explicating when two features concur to have a special impact on the response), thus helping the SVM linear model to include a certain amount of non-linearity. For instance, a two-way interaction is made by the multiplication of two features. A three-way is made by multiplying three features and so on, creating even more complex interactions for higher-degree expansions.
In Scikit-learn, ...
Get Python: Real World Machine Learning now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.