Skip to Content
Python: Real World Machine Learning
book

Python: Real World Machine Learning

by Prateek Joshi, John Hearty, Bastiaan Sjardin, Luca Massaron, Alberto Boschetti
November 2016
Beginner to intermediate
941 pages
21h 55m
English
Packt Publishing
Content preview from Python: Real World Machine Learning

Chapter 6. Classification and Regression Trees at Scale

In this chapter, we will focus on scalable methods for classification and regression trees. The following topics will be covered:

  • Tips and tricks for fast random forest applications in Scikit-learn
  • Additive random forest models and subsampling
  • GBM gradient boosting
  • XGBoost together with streaming methods
  • Very fast GBM and random forest in H2O

The aim of a decision tree is to learn a series of decision rules to infer the target labels based on the training data. Using a recursive algorithm, the process starts at the tree root and splits the data on the feature that results in the lowest impurity. Currently, the most widely applicable scalable tree-based applications are based on CART. Introduced ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Interpretable Machine Learning with Python

Interpretable Machine Learning with Python

Serg Masís
Large Scale Machine Learning with Python

Large Scale Machine Learning with Python

Luca Massaron, Alberto Boschetti, Bastiaan Sjardin

Publisher Resources

ISBN: 9781787123212Supplemental ContentPurchase Link