Markov decision process (MDP)

A Markov decision process is a framework used to represent the environment of a reinforcement learning problem. It is a graphical model with directed edges (meaning that one node of the graph points to another node). Each node represents a possible state in the environment, and each edge pointing out of a state represents an action that can be taken in the given state. For example, consider the following MDP:

Figure 5: A sample Markov Decision Process

The preceding MDP represents what a typical day of a programmer could look like. Each circle represents a particular state the programmer can be in, where the blue ...

Get Python Reinforcement Learning Projects now with O’Reilly online learning.

O’Reilly members experience live online training, plus books, videos, and digital content from 200+ publishers.