Chapter 9
Option Pricing
This chapter begins with an introduction of the notion of financial
derivative in Section 9.1. The general properties of the stock options
are described in Section 9.2. Furthermore, the option pricing theory is
presented using two approaches: the method of the binomial trees
(Section 9.3) and the classical Black-Scholes theory (Section 9.4).
A paradox related to the arbitrage free portfolio paradigm on which
the Black-Scholes theory is based is described in the Appendix section.
In finance, derivatives
are the instruments whose price depends
on the value of another (underlying) asset [1]. In particular, the
stock option is a derivative whose price depends on the underlying
stock price. Derivatives have also been used for many other assets,
including but not limited to commodities (e.g., cattle, lumber,
copper), Treasury bonds, and currencies.
An example of a simple derivative is a forward contract that obliges
its owner to buy or sell a certain amount of the underlying asset at a
specified price (so-called forward price or delivery price) on a specified
date (delivery date or maturity). The party involved in a contract as a
buyer is said to have a long position, while a seller is said to have a short
position. A forward contract is settled at maturity when the seller

Get Quantitative Finance for Physicists now with the O’Reilly learning platform.

O’Reilly members experience live online training, plus books, videos, and digital content from nearly 200 publishers.