Definition 2.24. Sei A eine (n × n)-Matrix. Dann heißt die Funktion QA : ℝn → ℝ definiert durch
die zur Matrix A gehörende quadratische Form. Die Matrix A heißt
a)positiv definit, wir schreiben A > 0, wenn für alle x⃗ ≠ 0⃗ gilt QA(x⃗) > 0.
b)positiv semidefinit, wir schreiben A ≥ 0, wenn für alle x⃗ ∈ ℝn gilt QA(x⃗) ≥ 0.
c)negativ definit, wir schreiben A < 0, wenn für alle x⃗ ≠ 0⃗ gilt QA(x⃗) < 0.
d)negativ semidefinit, wir schreiben A ≤ 0, wenn für alle x⃗ ∈ ℝn gilt QA(x⃗) ≤ 0.
e)indefinit, wenn Q A(x⃗) sowohl positive als auch negative Werte annehmen kann.
Zum Beispiel ist die Matrix
positiv definit, denn es gilt für alle x⃗ ∈ ℝ2 mit Ausnahme des Nullvektors ...
Get Quantitative Methoden der Wirtschaftswissenschaften, 4th Edition now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.