1. Akhieser, N. I., and I. M. Glazman, Theory of Linear Operators in Hilbert Space, Vol. 2, Ungar, New York, 1963.

2. Alber, G., T. Beth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner, and A. Zeilinger, Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments, Springer-Verlag, Heidelberg, Germany, 2001.

3. Alicki, R., and M. Fannes, Quantum Dynamical Systems, Oxford University Press, Oxford, 2001.

4. Alicki, R., and K. Lendi, Dynamical Semigroups and Applications, Lecture Notes in Physics 286, Springer-Verlag, Berlin, 1987.

5. Allen, L., and J. H. Eberly, Optical Resonance and Two-Level Atoms, Dover, New York, 1987.

6. Ash, R. B., Information Theory, Dover, New York, 1965.

7. Aspect, A., Bell's theorem: the naive view of an experimentalist, in [14], p. 119.

8. Belinfante, F. J., Measurement and Time Reversal in Objective Quantum Theory, Pergamon Press, Oxford, 1975.

9. Bell, J. S., On the Einstein–Podolsky–Rosen paradox, Physics 1, 195 (1964).

10. Bennett, C. H., and G. Brassard, Quantum cryptography: public key distribution and coin tossing, in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, IEEE, New York, 1984, p. 175.

11. Bennett, C. H., G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett. 70, 1895 (1993).

12. Bennett, C. H., G. Brassard, ...

Get Quantum Approach to Informatics now with the O’Reilly learning platform.

O’Reilly members experience live online training, plus books, videos, and digital content from nearly 200 publishers.