References

1. A. Ahuja, S. Kapoor. A quantum algorithm for finding the maximum. 1999. e-print quant-ph/9911082.

2. A. Aspect, J. Dalibard, G. Roger. Experimental test of Bell's inequalities using time-varying analyzers. Phys. Rev. Lett., 49:1804–1807, 1982.

3. A. Bell, T. J. Sejnowski. An information-maximisation approach to blind separation and blind deconvolution. Neural Computation, 7:1129–1159, 1995.

4. B. Podolsky, A. Einstein, N. Rosen. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev., 47:777–780, 1935.

5. A. Engelhart, W. Teich, J. Lindner, G. Jeney, S. Imre, L. Pap. A survey of multiuser/multisubchannel detection schemes based on recurrent neural networks. Wireless Communications and Mobile Computing, 2(3):269–284, 2002. Special issue on Advances in 3G Wireless Networks.

6. A. G. Fowler, L. C. L. Hollenberg. Robustness of Shor's algorithm with finite rotation control. 2003. e-print quant-ph/0306018.

7. A. Hyvärinen, J. Karhunen, E. Oja. Independent Component Analysis. Adaptive and Learning Systems for Signal Processing, Communication and Control. J. Wiley & Sons, Inc., New York, 2001.

8. A. J. Menezes, P. C. van Oorschot, S. A. Vanstone. Handbook of Applied Cryptography. CRC Press, 5th edition, 2001. e-print www.cacr.math.uwaterloo.ca/hac/.

9. A. K. Ekert, P. Hayden, H. Inamori. Basic concepts in quantum computation. Lectures given at les Houches Summer School on “Coherent Matter Waves”, July-August 1999. e-print quant-ph/0011013. ...

Get Quantum Computing and Communications: An Engineering Approach now with the O’Reilly learning platform.

O’Reilly members experience live online training, plus books, videos, and digital content from nearly 200 publishers.