August 2017
Intermediate to advanced
288 pages
8h 6m
English
Here is how we apply text2vec:
library(text2vec)
library(glmnet)
data("movie_review")
logistic_model <- function(Xtrain,Ytrain,Xtest,Ytest){
classifier <- cv.glmnet(x=Xtrain, y=Ytrain,
family="binomial", alpha=1, type.measure = "auc",
nfolds = 5, maxit = 1000)
plot(classifier)
vocab_test_pred <- predict(classifier, Xtest, type = "response")
return(cat("Train AUC : ", round(max(classifier$cvm), 4),
"Test AUC : ",glmnet:::auc(Ytest, vocab_test_pred),"\n"))
}
train_samples <- caret::createDataPartition(c(1:length(labels[1,1])),p ...