Skip to Content
R Deep Learning Essentials - Second Edition
book

R Deep Learning Essentials - Second Edition

by Mark Hodnett, Joshua F. Wiley
August 2018
Intermediate to advanced
378 pages
9h 9m
English
Packt Publishing
Content preview from R Deep Learning Essentials - Second Edition

Training an auto-encoder in R

In this section, we are going to train an auto-encoder in R and show you that it can be used as a dimensionality reduction technique. We will compare it with the approach we took in Chapter 2, Training a Prediction Modelwhere we used PCA to find the principal components in the image data. In that example, we used PCA and found that 23 factors was sufficient to explain 50% of the variance in the data. We built a neural network model using just these 23 factors to classify a dataset with either 5 or 6. We got 97.86% accuracy in that example.

We are going to follow a similar process in this example, and we will use the MINST dataset again. The following code from Chapter8/encoder.R loads the data. We will use ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

R Deep Learning Cookbook

R Deep Learning Cookbook

PKS Prakash, Achyutuni Sri Krishna Rao
Hands-On Deep Learning with R

Hands-On Deep Learning with R

Rodger Devine, Michael Pawlus
R: Unleash Machine Learning Techniques

R: Unleash Machine Learning Techniques

Raghav Bali, Dipanjan Sarkar, Brett Lantz, Cory Lesmeister
Deep Learning with R Cookbook

Deep Learning with R Cookbook

Swarna Gupta, Rehan Ali Ansari, Dipayan Sarkar

Publisher Resources

ISBN: 9781788992893Supplemental Content