O'Reilly logo

R: Recipes for Analysis, Visualization and Machine Learning by Chiu Yu-Wei, Atmajitsinh Gohil, Shanthi Viswanathan, Viswa Viswanathan

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Performing dimension reduction with PCA

Principal component analysis (PCA) is the most widely used linear method in dealing with dimension reduction problems. It is useful when data contains many features, and there is redundancy (correlation) within these features. To remove redundant features, PCA maps high dimension data into lower dimensions by reducing features into a smaller number of principal components that account for most of the variance of the original features. In this recipe, we will introduce how to perform dimension reduction with the PCA method.

Getting ready

In this recipe, we will use the swiss dataset as our target to perform PCA. The swiss dataset includes standardized fertility measures and socio-economic indicators from around ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required