Chapter 3. Logistic Regression and Discriminant Analysis


"The true logic of this world is the calculus of probabilities."

 -- James Clerk Maxwell, Scottish physicist

In the previous chapter, we took a look at using Ordinary Least Squares (OLS) to predict a quantitative outcome, in other words, linear regression. It is now time to shift gears somewhat and examine how we can develop algorithms to predict qualitative outcomes. Such outcome variables could be binary (male versus female, purchases versus does not purchase, tumor is benign versus malignant) or multinomial categories (education level or eye color). Regardless of whether or not the outcome of interest is binary or multinomial, the task of the analyst is to predict the probability that ...

Get R: Unleash Machine Learning Techniques now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.