Radiation Detectors for Medical Imaging

Book description

Radiation Detectors for Medical Imaging discusses the current state of the art and future prospects of photon-counting detectors for medical imaging applications. Featuring contributions from leading experts and pioneers in their respective fields, this book:Describes x-ray spectral imaging detectors based on cadmium zinc telluride (CdZnTe) and cad

Table of contents

  1. Preface
  2. Editors
  3. Contributors
  4. 1
  5. CdZnTe and CdTe Crystals for Medical Applications
    1. 1.1 CdTe and CdZnTe for Medical Applications
    2. 1.2 CdTe and CdZnTe Materials
    3. 1.3 Materials Technology
      1. 1.3.1 Defect Structure of High-Purity CdTe
      2. 1.3.2 Electrical Compensation
      3. 1.3.3 Carrier Transport
        1. 1.3.3.1 Recombination
        2. 1.3.3.2 Uniform Trapping
        3. 1.3.3.3 Nonuniform Trapping
        4. 1.3.3.4 Carrier Transport under High Photon Flux
    4. 1.4 Crystal Growth Technology
      1. 1.4.1 Parasitic Nucleation
      2. 1.4.2 Physical Defect Generation
      3. 1.4.3 Defect Interactions
      4. 1.4.4 Annealing
      5. 1.4.5 Status of Crystal Growth
    5. 1.5 Summary
    6. References
  6. 2
  7. Monte Carlo Modeling of X-Ray Detectors for Medical Imaging
    1. 2.1 Introduction
    2. 2.2 X-ray Detector Technologies
      1. 2.2.1 Scintillator-Based Detectors
      2. 2.2.2 Semiconductor-Based Detectors
    3. 2.3 Modeling Approaches
      1. 2.3.1 Photon–Electron Interactions
      2. 2.3.2 Electron–Hole Pair Transport
      3. 2.3.3 Coupled Monte Carlo Simulation
      4. 2.3.4 Analytical Methods
    4. 2.4 Monte Carlo Simulation of Radiation Transport
      1. 2.4.1 Theory
        1. 2.4.1.1 Charge Generation
        2. 2.4.1.2 Recombination and Trapping
      2. 2.4.2 Implementation
      3. 2.4.3 Indirect Detectors
    5. 2.5 Applications
      1. 2.5.1 Pulse-Height Spectroscopy
      2. 2.5.2 Information Factor and Detective Quantum Efficiency
    6. 2.6 Summary
    7. Acknowledgments
    8. References
  8. 3
  9. Medical X-Ray and CT Imaging with Photon-Counting Detectors
    1. 3.1 Introduction
    2. 3.2 Historical Overview of Photon-Counting X-ray and CT Systems
    3. 3.3 Advantages of PCXCT
      1. 3.3.1 Electronic Noise Rejection
      2. 3.3.2 SNR Improvement with Photon Energy Weighting
        1. 3.3.2.1 Generalized Weighting Approach
        2. 3.3.2.2 Energy Weighting in Projection X-Ray Imaging
        3. 3.3.2.3 Energy Weighting in CT
      3. 3.3.3 Material Decomposition
    4. 3.4 Design Concepts of PCXCT
      1. 3.4.1 High Demands to Clinical Imaging Systems
      2. 3.4.2 Practical PCXCT Detector Configuration
      3. 3.4.3 PCXCT Detector Electronics
      4. 3.4.4 Material Selection for PCXCT Detectors
      5. 3.4.5 Imaging Configurations
    5. 3.5 PCXCT Detector Technologies
      1. 3.5.1 PCXCT with Si Strip Detectors
      2. 3.5.2 PCXCT with CZT and CdTe Detectors
      3. 3.5.3 Medipix Detectors
    6. 3.6 Problems with PCXCT and Future Developments
      1. 3.6.1 Count Rate Limitations
      2. 3.6.2 Low-Energy Spectral Tailing
      3. 3.6.3 Intensity-Dependent Line Artifacts
      4. 3.6.4 Charge Sharing
      5. 3.6.5 Suboptimal Energy Resolution
    7. 3.7 Feasible Clinical Application: Photon-Counting Spectral Breast CT
    8. 3.8 Conclusion
    9. References
  10. 4
  11. Pixelated Semiconductor and Parallel ASIC Design for Spectral Clinical Radiology
    1. 4.1 Introduction
    2. 4.2 Direct Conversion Semiconductor Sensor Development
    3. 4.3 ASIC Development
    4. 4.4 Module Development for Spectral Computed Tomography
    5. 4.5 Detector Development for Spectral Bone Mineral Densitometry
    6. 4.6 Module Development for Spectral Digital Mammography
    7. 4.7 Discussion
    8. 4.8 Conclusions
    9. Acknowledgments
    10. References
  12. 5
  13. Silicon Photomultipliers in Detectors for Nuclear Medicine
    1. 5.1 Introduction
    2. 5.2 Operation Principles
      1. 5.2.1 Basic Parameters of a SiPM
        1. 5.2.1.1 Gain
        2. 5.2.1.2 Photon Detection Efficiency
        3. 5.2.1.3 After-Pulses
        4. 5.2.1.4 Optical Crosstalk
        5. 5.2.1.5 Dark Noise
        6. 5.2.1.6 Linearity of a SiPM
        7. 5.2.1.7 Excess Noise Factor
        8. 5.2.1.8 Transit Time Spread
      2. 5.2.2 Digital Silicon Photomultipliers
      3. 5.2.3 SiPMs in Gamma Spectrometry with Scintillators
      4. 5.2.4 SiPMs in Fast Timing with Scintillators
    3. 5.3 SiPMs in Medical Instrumentations
    4. References
  14. 6
  15. Imaging Technologies and Potential Clinical Applications of Photon-Counting X-Ray Computed Tomography
    1. 6.1 Imaging Technologies
      1. 6.1.1 Overall Strategy
      2. 6.1.2 X-ray Beam-Shaping Filters
      3. 6.1.3 Calibration and Compensation Methods
      4. 6.1.4 PCD Models
      5. 6.1.5 Image Reconstruction
        1. 6.1.5.1 Interior Problem
        2. 6.1.5.2 Spectral Data
    2. 6.2 Potential Benefits and Clinical Applications
      1. 6.2.1 Improved Contrast-to-Noise Ratio and Contrast of CT Images
      2. 6.2.2 Dose Reductions of X-ray Radiation and Contrast Agents
      3. 6.2.3 Improved Spatial Resolution
      4. 6.2.4 Beam-Hardening Artifacts
      5. 6.2.5 Quantitative CT and X-ray Imaging
      6. 6.2.6 Accurate K-Edge Imaging
      7. 6.2.7 Simultaneous Multiagent Imaging
      8. 6.2.8 Molecular CT with Nanoparticle Contrast Agents and Personalized Medicine
    3. References
  16. 7
  17. Photon-Counting Detectors and Clinical Applications in Medical CT Imaging
    1. 7.1 Photon-Counting Detectors for Medical Imaging
      1. 7.1.1 Direct Conversion
      2. 7.1.2 Material Properties
      3. 7.1.3 Candidate Materials
      4. 7.1.4 Detector Fabrication and Signal Formation
      5. 7.1.5 Prospects for CT Application
    2. 7.2 Requirements for Photon-Counting Detectors in Medical CT Imaging
      1. 7.2.1 Introduction
      2. 7.2.2 Image Quality (Spatial and Contrast Resolution)
      3. 7.2.3 Dose Efficiency
      4. 7.2.4 Examination Time
      5. 7.2.5 Rings (Bands)
      6. 7.2.6 Multienergy Imaging
    3. 7.3 Clinical Applications with Photon-Counting Detectors
      1. 7.3.1 K-Edge Imaging
      2. 7.3.2 Improved Spatial Resolution
      3. 7.3.3 Dose Reduction
    4. References
  18. 8
  19. Radiation Detection in SPECT and PET
    1. 8.1 Introduction
      1. 8.1.1 Historic Perspectives
      2. 8.1.2 Early Developments of SPECT
      3. 8.1.3 Early Developments of PET
    2. 8.2 Overview
      1. 8.2.1 Overview of SPECT
      2. 8.2.2 Overview of PET
    3. 8.3 Current Technologies in Routine Uses
      1. 8.3.1 Scintillation Detectors and Pulse-Height Analysis
      2. 8.3.2 SPECT
        1. 8.3.2.1 Gamma Cameras
        2. 8.3.2.2 Anger Position Logic
        3. 8.3.2.3 Collimators
      3. 8.3.3 PET
        1. 8.3.3.1 Block PET Detector Modules
        2. 8.3.3.2 Coincidence Detection
        3. 8.3.3.3 Factors Affecting Spatial Resolution
        4. 8.3.3.4 Considerations for the Scintillator
    4. 8.4 Recent Advances
      1. 8.4.1 SPECT
        1. 8.4.1.1 Scintillators
        2. 8.4.1.2 Semiconductor Detectors
        3. 8.4.1.3 Photodetectors
      2. 8.4.2 PET
        1. 8.4.2.1 DOI Detectors
        2. 8.4.2.2 TOF Detectors
        3. 8.4.2.3 Silicon Photomultipliers
        4. 8.4.2.4 Novel Readout Methods
        5. 8.4.2.5 Waveform Sampling
    5. 8.5 Future Trends and Summary
      1. 8.5.1 Modular and Reconfigurable Detectors
      2. 8.5.2 Application-Specific Imaging Systems
      3. 8.5.3 Multimodality Imaging Systems
      4. 8.5.4 SPECT and PET in Image-Guided Therapy
      5. 8.5.5 Summary
    6. References
  20. 9
  21. Review of Detectors Available for Full-Field Digital Mammography
    1. 9.1 From Analog to Digital Mammography
    2. 9.2 Computed Radiography
      1. 9.2.1 Dual-Side Reading
      2. 9.2.2 Line-Scan Reading
      3. 9.2.3 Columnar Photostimulable Phosphor
    3. 9.3 Flat-Panel Detectors
      1. 9.3.1 Indirect Conversion Detector
        1. 9.3.1.1 TFT Readout
        2. 9.3.1.2 CMOS Readout
      2. 9.3.2 Direct Conversion Detectors
        1. 9.3.2.1 TFT Readout
        2. 9.3.2.2 Optical Readout
        3. 9.3.2.3 TFT with Hexagonal Array
    4. 9.4 Slot-Scanning Systems
      1. 9.4.1 Indirect Conversion Approach with Tiled CCD
      2. 9.4.2 Direct Conversion with Photon-Counting Detectors
    5. References
  22. 10
  23. Grating-Based Phase-Contrast X-Ray Imaging Technique
    1. 10.1 INTRODUCTION
    2. 10.2 X-ray and Its Interaction with Matter
    3. 10.3 Imaging with X-ray
    4. 10.4 Phase-Contrast X-ray Imaging
    5. 10.5 Grating-Based PCXI
    6. 10.6 Gratings
    7. 10.7 Phase Stepping
    8. 10.8 Image Reconstruction
    9. 10.9 Optimization
    10. 10.10 Limitations
    11. References
  24. 11
  25. Emerging Concept in Nuclear Medicine
  26. The Voxel Imaging PET (VIP) Project
    1. 11.1 Introduction
      1. 11.1.1 Voxel Imaging PET (VIP)
      2. 11.1.2 Pixel CdTe
      3. 11.1.3 VIP-PIX Chip
    2. 11.2 Image Reconstruction
      1. 11.2.1 Introduction
      2. 11.2.2 Simple Back-Projection
      3. 11.2.3 Filtered Back-Projection
      4. 11.2.4 Ordered Subset Expectation Maximization (OSEM)
      5. 11.2.5 Origin Ensemble (OE) Algorithm
      6. 11.2.6 Image Quality Criteria
      7. 11.2.7 Available Software
    3. 11.3 Voxel Imaging PET
      1. 11.3.1 Current Limitations in PET Design
      2. 11.3.2 Evaluation of the VIP Design
      3. 11.3.3 The VIP Scatter Fraction
      4. 11.3.4 VIP Counting Performance
      5. 11.3.5 VIP Resolution
      6. 11.3.6 VIP Image Quality
      7. 11.3.7 VIP Minimum Detectable Lesion Size
      8. 11.3.8 Simulation and Image Reconstruction of Real 3-D Human Head Phantom
      9. 11.3.9 VIP Image Reconstruction Algorithms
    4. 11.4 Positron Emission Mammography with VIP
      1. 11.4.1 VIP PEM Design
      2. 11.4.2 Evaluation of Imaging Performance
    5. 11.5 VIP Compton Camera
      1. 11.5.1 Introduction to SPECT and Compton Camera
        1. 11.5.1.1 SPECT
        2. 11.5.1.2 Compton Camera
      2. 11.5.2 VIP Compton Camera Design
      3. 11.5.3 VIP Compton Camera Performance
        1. 11.5.3.1 Optimization of Design
        2. 11.5.3.2 Detector Sensitivity
        3. 11.5.3.3 Spatial Resolution
      4. 11.5.4 VIP Compton Camera Image Reconstruction Results
    6. 11.6 Conclusion
    7. Acknowledgments
    8. References

Product information

  • Title: Radiation Detectors for Medical Imaging
  • Author(s): Jan S. Iwanczyk
  • Release date: October 2015
  • Publisher(s): CRC Press
  • ISBN: 9781498766821