5Large Deviations of Systems in the Scheme of Splitting and Double Merging

As we have already mentioned, the classical formulations of the problem in the study of large deviations relate to the small diffusion scheme. A problem that is similar to the Poisson approximation scheme in the case of processes with independent increments was investigated in Mogulskii (1993).

In this section, we describe how the approach proposed in Chapters 3 and 4 can be applied in cases that could not be studied using classical methods. That is, we describe the situation when the switching Markov process has a complicated structure. We introduce the switching Markov process xε(t), t ≥ 0 on the standard phase (state) space (E, ℰ) in the series scheme with a small series parameter ε → 0, ε > 0 on the split phase space

image

The Markov kernel is

image

The problem of studying large deviations in the phase merging scheme (see section 1.1.5 and conditions ME1ME4), both in the small diffusion scheme and the Poisson approximation scheme, is new and still unexplored. It should be noted that an attempt to set such a task was made in Mogulskii (1993), but its formulation and method of solution do not meet the stated goal.

5.1. Small diffusion scheme

5.1.1. Large deviations under the local balance (LB) condition

Random ...

Get Random Evolutionary Systems now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.