6.2.5 Destroying the Axiom of Choice

In general there is no direct way of destroying the Axiom of Choice (AC) by a forcing extension of a transitive model of ZFC. One introduces an intermediate model to achieve this.

Definition 6.2.13.

–A set X is ordinal definable in M, written X ∈ ODM, if there is a formula φ(x, v0,…, vn) together with ordinals α0,…, αn, β in M such that aXimageφ(a, α0,…, αn), where image is the collection of sets in M of rank less than β.

X is hereditarily ordinal definable in M, written X ∈ HODM, if TC({X}) ⊂ ODM.

If M is a transitive ...

Get Recursion Theory now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.