## With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

No credit card required

# Extending to linear regression

Linear regression tries to fit a line through a given set of points, choosing the best fit. The best fit is the line that minimizes the summed squared difference between the value dictated by the line for a certain value of x and its corresponding y values. (It is optimizing the same squared error that we met before when checking how good a mean was as a predictor.)

Since linear regression is a line; in bi-dimensional space (x, y), it takes the form of the classical formula of a line in a Cartesian plane: y = mx + q, where m is the angular coefficient (expressing the angle between the line and the x axis) and q is the intercept between the line and the x axis.

Formally, machine learning indicates the correct expression ...

## With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

No credit card required