v
Contents
Foreword .......................................................................................................................................................xi
Preface........................................................................................................................................................ xiii
Acknowledgments ...................................................................................................................................... xvii
Authors ........................................................................................................................................................ xix
Chapter 1 There Is More to Assessing Risk Than Statistics ...................................................................1
1.1 Introduction ..................................................................................................................1
1.2 Predicting Economic Growth: The Normal Distribution and Its Limitations .............3
1.3 Patterns and Randomness: From School League Tables to Siegfried and Roy ...........7
1.4 Dubious Relationships: Why You Should Be Very Wary of Correlations and
Their Signicance Values .......................................................................................... 10
1.5 Spurious Correlations: How You Can Always Find a Silly ‘Cause’ of Exam
Success ....................................................................................................................... 14
1.6 The Danger of Regression: Looking Back When You Need to Look Forward ......... 16
1.7 The Danger of Averages ............................................................................................. 18
1.7.1 What Type of Average? ................................................................................. 19
1.7.2 When Averages Alone Will Never Be Sufcient for Decision Making ........20
1.8 When Simpsons Paradox Becomes More Worrisome ............................................... 21
1.9 Uncertain Information and Incomplete Information: Do Not Assume They Are
Different .....................................................................................................................23
1.10 Do Not Trust Anybody (Even Experts) to Properly Reason about Probabilities .......26
1.11 Chapter Summary ......................................................................................................29
Further Reading ....................................................................................................................29
Chapter 2 The Need for Causal, Explanatory Models in Risk Assessment .......................................... 31
2.1 Introduction ................................................................................................................ 31
2.2 Are You More Likely to Die in an Automobile Crash When the Weather Is
Good Compared to Bad? ............................................................................................ 31
2.3 When Ideology and Causation Collide .......................................................................35
2.4 The Limitations of Common Approaches to Risk Assessment .................................37
2.4.1 Measuring Armageddon and Other Risks ....................................................37
2.4.2 Risks and Opportunities................................................................................39
2.4.3 Risk Registers and Heat Maps ......................................................................40
2.5 Thinking about Risk Using Causal Analysis ............................................................. 42
2.6 Applying the CausalFramework to Armageddon ......................................................46
2.7 Summary .................................................................................................................... 49
Further Reading ....................................................................................................................49
Chapter 3 Measuring Uncertainty: The Inevitability of Subjectivity .................................................... 51
3.1 Introduction ................................................................................................................ 51
3.2 Experiments, Outcomes, and Events .......................................................................... 52
3.2.1 Multiple Experiments ....................................................................................56
3.2.2 Joint Experiments .......................................................................................... 57
vi Contents
3.2.3 Joint Events and Marginalization ..................................................................58
3.3 Frequentist versus Subjective View of Uncertainty ...................................................60
3.4 Summary .................................................................................................................... 67
Further Reading .....................................................................................................................68
Chapter 4 The Basics of Probability ...................................................................................................... 69
4.1 Introduction ................................................................................................................69
4.2 Some Observations Leading to Axioms and Theorems of Probability .....................69
4.3 Probability Distributions ............................................................................................ 81
4.3.1 Probability Distributions with Innite Outcomes .........................................83
4.3.2 Joint Probability Distributions and Probability of Marginalized Events ......85
4.3.3 Dealing with More than Two Variables ........................................................ 88
4.4 Independent Events and Conditional Probability .......................................................89
4.5 Binomial Distribution .................................................................................................96
4.6 Using Simple Probability Theory to Solve Earlier Problems and Explain
Widespread Misunderstandings ............................................................................... 101
4.6.1 The Birthday Problem ................................................................................. 101
4.6.2 The Monty Hall Problem ............................................................................103
4.6.3 When Incredible Events Are Really Mundane ........................................... 105
4.6.4 When Mundane Events Really Are Quite Incredible ................................. 109
4.7 Summary .................................................................................................................. 110
Further Reading .................................................................................................................. 111
Chapter 5 Bayes’ Theorem and Conditional Probability ..................................................................... 113
5.1 Introduction .............................................................................................................. 113
5.2 All Probabilities Are Conditional ............................................................................ 113
5.3 Bayes’ Theorem ........................................................................................................ 116
5.4 Using Bayes’ Theorem to Debunk Some Probability Fallacies ............................... 121
5.4.1 Traditional Statistical Hypothesis Testing ..................................................122
5.4.2 The Prosecutor Fallacy Revisited ...............................................................124
5.4.3 The Defendant’s Fallacy .............................................................................124
5.4.4 Odds Form of Bayes and the Likelihood Ratio ..........................................125
5.5 Second-Order Probability ........................................................................................ 127
5.6 Summary .................................................................................................................. 129
Further Reading .................................................................................................................. 129
Chapter 6 From Bayes’ Theorem to Bayesian Networks ..................................................................... 131
6.1 Introduction .............................................................................................................. 131
6.2 A Very Simple Risk Assessment Problem ............................................................... 132
6.3 Accounting for Multiple Causes (and Effects) .........................................................134
6.4 Using Propagation to Make Special Types of Reasoning Possible ..........................137
6.5 The Crucial Independence Assumptions ................................................................. 139
6.6 Structural Properties of BNs .................................................................................... 144
6.6.1 Serial Connection: Causal and Evidential Trails ........................................ 144
6.6.2 Diverging Connection: Common Cause ..................................................... 147
6.6.3 Converging Connection: Common Effect ................................................... 149
6.6.4 Determining Whether Any Two Nodes in a BN Are Dependent ............... 151

Get Risk Assessment and Decision Analysis with Bayesian Networks now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.