 ${p}_{0,\mathrm{call}}={X}_{2}{\mathrm{e}}^{-r{T}_{2}}M\left(-{d}_{2},{y}_{2};-\sqrt{\frac{{T}_{1}}{{T}_{2}}}\right)-{S}_{0}M\left(-{d}_{1},{y}_{1};-\sqrt{\frac{{T}_{1}}{{T}_{2}}}\right)+{X}_{1}{\mathrm{e}}^{-r{T}_{1}}N\left(-{d}_{2}\right)$ ${c}_{0,\mathrm{put}}={X}_{2}{\mathrm{e}}^{-r{T}_{2}}M\left(-{d}_{2}-{y}_{2};\sqrt{\frac{{T}_{1}}{{T}_{2}}}\right)-{S}_{0}M\left(-{d}_{2}-{y}_{2};\sqrt{\frac{{T}_{1}}{{T}_{2}}}\right)-{X}_{1}{\mathrm{e}}^{-r{T}_{1}}N\left(-{d}_{2}\right)$ ${p}_{0,\mathrm{put}}={S}_{0}M\left({d}_{1}-{y}_{1};-\sqrt{\frac{{T}_{1}}{{T}_{2}}}\right)-{X}_{2}{\mathrm{e}}^{-r{T}_{2}}M\left({d}_{2}-{y}_{2};-\sqrt{\frac{{T}_{1}}{{T}_{2}}}\right)+{X}_{1}{\mathrm{e}}^{-r{T}_{1}}N\left({d}_{2}\right)$ Let ct,call, pt,call, ct,put, and pt,put denote the values of a call on a call, a put on a call, a call on a put, and a put on a put at time t, respectively. To obtain the ...

Get Risk Neutral Pricing and Financial Mathematics: A Primer now with the O’Reilly learning platform.

O’Reilly members experience live online training, plus books, videos, and digital content from nearly 200 publishers.