Table Name Description Statement Option
SimpleStatistics Simple statistics for
input variables
PROC Default
VariableStat Statistics for
variables within
clusters
PROC Default
Table A1.29 ODS Table Names Produced by the FMM Procedure
Table Name Description
Required Statement and
Option
AutoCorr Autocorrelation among
posterior estimates
BAYES
BayesInfo Basic information about
Bayesian estimation
BAYES
ClassLevels Level information from the
Statement
CLASS
CompDescription ComponentDescription in
models with varying number
of components
KMAX= in MODEL with
ML estimation
CompEvaluation Comparison of mixture
models with varying number
of components
KMAX= in MODEL with
ML estimation
CompInfo Component information COMPONENTINFO option
in PROC FMM statement
ConvergenceStatus Status of optimization at
conclusion of optimization
Default output
Constraints Linear equality and inequality
constraints
RESTRICT statement or
EQUATE= EFFECTS option
in MODEL statement
Corr Asymptotic correlation matrix
of parameter estimates (ML)
or empirical correlation
matrix of the Bayesian
posterior estimates
CORR option in PROC FMM
statement
924 Appendix 1 • Output Object Table Names
Table Name Description
Required Statement and
Option
Cov Asymptotic covariance matrix
of parameter estimates (ML)
or empirical covariance
matrix of the Bayesian
posterior estimates
COV option in PROC FMM
statement
CovI Inverse of the covariance
matrix of the parameter
estimates
COVI option in PROC FMM
statement
ESS Effective sample sizes BAYES
FitStatistics Fit statistics Default output
Geweke Geweke diagnostics for
Markov chains
DIAG=GEWEKE option in
BAYES statement
Heidelberger Heidelberger and Welch
diagnostics for Markov
chains
DIAG=HEIDELBERGER
option in BAYES statement
Hessian Hessian matrix from the
maximum likelihood
optimization, evaluated at the
converged estimates
HESSIAN
IterHistory Optimizer iteration history Default output for maximum
likelihood estimation;
included in Bayesian
estimation when BAYES
statement includes the
INITIAL= MLE option and
PROC FMM statement
includes the FITDETAILS
option
MCSE Monte Carlo standard errors DIAG=MCERROR in
BAYES statement
MixingProbs Solutions for the parameter
estimates associated with
effects in statements
Default output for ML
estimation if number of
components is greater than 1
ModelInfo Model information Default output
NObs Number of observations read
and used, number of trials and
events
Default output
OptInfo Optimization information Default output for ML
estimation
ODS Table Names and the SAS/STAT Procedures That Produce Them 925
Table Name Description
Required Statement and
Option
ParameterEstimates Solutions for the parameter
estimates associated with
effects in statements
Default output for ML
estimation
ParameterMap Mapping of parameter names
to data set
OUTPOST= option in
BAYES statement
PriorInfo Prior distributions and initial
value of Markov chain
BAYES
PostSummaries Summary statistics for
posterior estimates
BAYES
PostIntervals Equal-tail and highest
posterior density intervals for
posterior estimates
BAYES
Raftery Raftery and Lewis
diagnostics for Markov
chains
DIAG=RAFTERY option in
BAYES statement
ResponseProfile Response categories and
category modeled
Default output in models with
binary response
Table A1.30 ODS Table Names Produced by the GAM Procedure
Table Name Description Statement Option
ANODEV Analysis of deviance
table for smoothing
variables
PROC Default
ClassSummary Summary of
classification
variables
PROC Default
ConvergenceStatus Convergence status
of the local scoring
algorithm
PROC Default
InputSummary Input data summary PROC Default
IterHistory Iteration history table MODEL ITPRINT
IterSummary Iteration summary PROC Default
926 Appendix 1 • Output Object Table Names
Table Name Description Statement Option
FitSummary Fit parameters and fit
summary
PROC Default
ParameterEstimates Parameter estimation
for regression
variables
PROC Default
ResponseProfile Frequency counts for
binary models
MODEL DIST=BINOMIAL
Table A1.31 ODS Table Names Produced by the GENMOD Procedure for a Classical
Analysis
Table Name Description Statement Option
AssessmentSummary Model assessment
summary
ASSESS Default
ClassLevels Classification
variable levels
CLASS Default
Contrasts Tests of contrasts CONTRAST Default
ContrastCoef Contrast coefficients CONTRAST E
ConvergenceStatus Convergence status MODEL Default
CorrB Parameter estimate
correlation matrix
MODEL CORRB
CovB Parameter estimate
covariance matrix
MODEL COVB
Estimates Estimates of contrasts ESTIMATE Default
EstimateCoef Contrast coefficients ESTIMATE E
GEEEmpPEst GEE parameter
estimates with
empirical standard
errors
REPEATED Default
GEEExchCorr GEE exchangeable
working correlation
value
REPEATED TYPE=EXCH
GEEFitCriteria GEE QIC fit criteria REPEATED Default
ODS Table Names and the SAS/STAT Procedures That Produce Them 927
Table Name Description Statement Option
GEELogORInfo GEE log odds ratio
model information
REPEATED LOGOR=
GEEModInfo GEE model
information
REPEATED Default
GEEModPEst GEE parameter
estimates with
model-based standard
errors
REPEATED MODELSE
GEENCorr GEE model-based
correlation matrix
REPEATED MCORRB
GEENCov GEE model-based
covariance matrix
REPEATED MCOVB
GEERCorr GEE empirical
correlation matrix
REPEATED ECORRB
GEERCov GEE empirical
covariance matrix
REPEATED ECOVB
GEEWCorr GEE working
correlation matrix
REPEATED CORRW
IterContrasts Iteration history for
contrasts
MODEL
CONTRAST
ITPRINT
IterLRCI Iteration history for
likelihood ratio
confidence intervals
MODEL LRCI ITPRINT
IterParms Iteration history for
parameter estimates
MODEL ITPRINT
IterParmsGEE Iteration history for
GEE parameter
estimates
MODEL
REPEATED
ITPRINT
IterType3 Iteration history for
Type 3 statistics
MODEL TYPE3 ITPRINT
LRCI Likelihood ratio
confidence intervals
MODEL LRCI ITPRINT
Coef Coefficients for least
squares means
LSMEANS E
Diffs Least squares means
differences
LSMEANS DIFF
928 Appendix 1 • Output Object Table Names
Get SAS 9.4 Output Delivery System, 3rd Edition now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.