O'Reilly logo

Scala Data Analysis Cookbook by Arun Manivannan

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Gradient descent

With supervised learning, in order for the algorithm to learn the relationship between the input and the output features, we provide a set of manually curated values for the target variable (y) against a set of input variables (x). We call it the training set. The learning algorithm then has to go over our training set, perform some optimization, and come up with a model that has the least cost—deviation from the true values. So technically, we have two algorithms for every learning problem: an algorithm that comes up with the function and (an initial set of) weights for each of the x features, and a supporting algorithm (also called cost minimization or optimization algorithm) that looks at our function parameters (feature weights) ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required