This section describes very briefly some of the mathematical concepts used in the book.

Linear algebra

Many algorithms used in machine learning such as minimization of a convex loss function, principal component analysis, or least squares regression involves invariably manipulation and transformation of matrices. There are many good books on the subject, from the inexpensive [A:2] to the sophisticated [A:3].

QR decomposition

The QR decomposition (also known as QR factorization) is the decomposition of a matrix A into a product of an orthogonal matrix Q and upper triangular matrix R. A=QR and QT Q=I [A:4].

The decomposition is unique if A is a real, square, and invertible matrix. In the case of a rectangle matrix A, m by n with m > n the ...

Get Scala for Machine Learning - Second Edition now with the O’Reilly learning platform.

O’Reilly members experience live online training, plus books, videos, and digital content from nearly 200 publishers.