Expectation-Maximization (EM)

The EM was originally introduced to estimate the maximum likelihood in the case of incomplete data [4:7]. The EM algorithm is an iterative method to compute the model features that maximize the likely estimate for observed values, considering unobserved values.

The iterative algorithm consists of computing:

  • The expectation, E, of the maximum likelihood for the observed data by inferring the latent values (E-step)
  • The model features that maximize the expectation E (M-step)

The EM algorithm is applied to solve clustering problems by if each latent variable follows a Normal or Gaussian distribution. This is similar to the K-means algorithm for which the distance of each data point to the center of each cluster follows a ...

Get Scala for Machine Learning - Second Edition now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.