O'Reilly logo

Scala: Guide for Data Science Professionals by Patrick R. Nicolas, Arun Manivannan, Pascal Bugnion

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Chapter 4. Unsupervised Learning

Labeling a set of observations for classification or regression can be a daunting task, especially in the case of a large feature set. In some cases, labeled observations are either not available or not possible to create. In an attempt to extract some hidden association or structures from observations, the data scientist relies on unsupervised learning techniques to detect patterns or similarity in data.

The goal of unsupervised learning is to discover patterns of regularities and irregularities in a set of observations. These techniques are also applied in reducing the solution space or feature set similarly to the divide-and-conquer approach commonly used in Computer Science.

There are numerous unsupervised algorithms; ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required