Using word2vec to find word relationships
Word2vec has been developed by Tomas Mikolov at Google, around 2012. The original idea behind word2vec was to demonstrate that one might improve efficiency by trading the model's complexity for efficiency. Instead of representing a document as bags of words, word2vec takes each word context into account by trying to analyze n-grams or skip-grams (a set of surrounding tokens with potential the token in question skipped). The words and word contexts themselves are represented by an array of floats/doubles . The objective function is to maximize log likelihood:
Where:
By choosing the optimal and to get a comprehensive ...
Get Scala:Applied Machine Learning now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.