Sensors for Next-Generation Electronic Systems and Technologies

Book description

The text presents case studies on surface plasmon resonance sensors, MEMS-based fluidic sensors, and MEMS-based electrochemical gas sensors in a single volume. The text will be useful for senior undergraduate, graduate students, academic researchers in the fields of electrical engineering, electronics, and communication engineering.

Table of contents

  1. Cover Page
  2. Half Title page
  3. Title Page
  4. Copyright Page
  5. Contents
  6. Acknowledgements
  7. Preface
  8. About the editors
  9. Contributors
  10. Chapter 1 Fabrication and study of fluidic MEMS device for toxic heavy metal ion sensing in water
    1. 1.1 Introduction
    2. 1.2 Design of micromixer device
      1. 1.2.1 Simulation of Herringbone (HB) structure micromixer device
    3. 1.3 Experimental
      1. 1.3.1 Design of HB bent micromixer device
      2. 1.3.2 Fabricated HB bent micromixer device
      3. 1.3.3 Preparation of gold nanofluids
    4. 1.4 Sample fluid preparation
      1. 1.4.1 Detection process of metal ions using microfluidic device
    5. 1.5 Results and discussion
      1. 1.5.1 FTIR studies of sensing fluids
      2. 1.5.2 Fluorescence studies
    6. 1.6 Colorimetric method based heavy metal ions detection
      1. 1.6.1 Colorimetric analysis in conventional tube
      2. 1.6.2 Colorimetric analysis in microfluidic device
    7. 1.7 Conclusion
    8. References
  11. Chapter 2 The review of micro-electromechanical systems-based biosensor: A cellular base perspective
    1. 2.1 Introduction
    2. 2.2 The prologue of biological cells
      1. 2.2.1 The prologue of biological cell
      2. 2.2.2 Cell cycle and division
      3. 2.2.3 Mathematical modeling of Single cell
      4. 2.2.4 Growth model
      5. 2.2.5 Cancer prognosis
    3. 2.3 Techniques involved in detection of biophysical properties of the cell
      1. 2.3.1 Coulter devices
      2. 2.3.2 Fluorescent-based techniques
      3. 2.3.3 Flow cytometry
      4. 2.3.4 Mass spectrometry
      5. 2.3.5 Surface plasmon resonance
    4. 2.4 Micro electro mechanical systems based mass sensors
      1. 2.4.1 Technique of mass sensing using resonant mass sensor
      2. 2.4.2 Cantilever mechanics
    5. 2.5 Mass sensors reported in literature
      1. 2.5.1 Pedestal mass sensor
      2. 2.5.2 Suspended micro-resonating channel (SMR)
    6. 2.6 Fractal MEMS structures
      1. 2.6.1 Fractal tree geometry realization
    7. References
  12. Chapter 3 MEMS-based electrochemical gas sensor
    1. 3.1 Introduction
    2. 3.2 Gas sensors classification
      1. 3.2.1 Mass-sensitive gas sensors
      2. 3.2.2 Optical gas sensors
      3. 3.2.3 Thermometric sensor
      4. 3.2.4 Electrochemical sensors
    3. 3.3 Fabrication materials
      1. 3.3.1 Metal oxide semiconductors
      2. 3.3.2 Graphene
      3. 3.3.3 Composite materials (CM)
    4. 3.4 MEMS electrochemical gas sensor
    5. 3.5 Structure
    6. 3.6 Fabrication of MEMS gas sensors
    7. 3.7 Application
    8. 3.8 Conclusion
    9. References
  13. Chapter 4 Electrochemical biosensors
    1. 4.1 Introduction
    2. 4.2 Classifying of biosensors
    3. 4.3 Principles of electrochemical biosensors
      1. 4.3.1 Potentiometric method
      2. 4.3.2 Voltammetric method
      3. 4.3.3 Impedance method
      4. 4.3.4 Amperometric method
      5. 4.3.5 Electrochemical biosensor assay strategy: labeled vs. label-free
      6. 4.3.6 Biocatalytic/affinity electrochemical biosensors
    4. 4.4 Electrochemical lab-on-a-chip systems
      1. 4.4.1 Design of LOC systems
      2. 4.4.2 Materials and fabrication
      3. 4.4.3 Microfluidics
    5. 4.5 Wearable electrochemical biosensor
      1. 4.5.1 Target biofluids for the wearable electrochemical biosensors
      2. 4.5.2 Template and non-template fabrication methods
    6. 4.6 Healthcare applications
      1. 4.6.1 Cancer detection
      2. 4.6.2 Infectious detection
      3. 4.6.3 Cardiac detection
    7. 4.7 Conclusion
    8. References
  14. Chapter 5 Graphene/carbon nanotubes-based biosensors for glucose, cholesterol, and dopamine detection
    1. 5.1 Introduction to carbon nanomaterials
      1. 5.1.1 Carbon nanotubes
      2. 5.1.2 Structure
      3. 5.1.3 Properties
      4. 5.1.4 Synthesis and functionalization of CNTs
      5. 5.1.5 Purification of CNTs
      6. 5.1.6 Graphene
    2. 5.2 Graphene synthesis methods
      1. 5.2.1 Chemical vapor deposition techniques
      2. 5.2.2 Exfoliation
      3. 5.2.3 Carbon nanomaterials for electrochemical detection
      4. 5.2.4 Glucose biosensors
      5. 5.2.5 CNT and graphene-based glucose biosensor
      6. 5.2.6 Non-enzymatic glucose biosensors
      7. 5.2.7 Cholesterol biosensors
      8. 5.2.8 Dopamine biosensors
      9. 5.2.9 Computational studies on graphene and carbon nanotube-based biosensors
      10. 5.2.10 Challenges in modeling and simulation of graphene and CNTs for sensing applications
      11. 5.2.11 Challenges and future trends
    3. References
  15. Chapter 6 Transition metal dichalcogenide based surface plasmon resonance for bio-sensing
    1. 6.1 Introduction
      1. 6.1.1 Basics of the surface plasmon resonance sensor
      2. 6.1.2 Interrogation approaches
      3. 6.1.3 Surface plasmon resonance sensor performance parameter
    2. 6.2 Two-dimensional materials
    3. 6.3 Biosensor
      1. 6.3.1 Optical biosensor
    4. 6.4 Advanced materials-based surface plasmon resonance biosensor
      1. 6.4.1 Graphene-based sensors
      2. 6.4.2 TMDs based sensors
    5. 6.5 Conclusion
    6. References
  16. Chapter 7 Graphene and carbon nanotube-based sensors
    1. 7.1 Introduction
    2. 7.2 Classification of graphene and its derivatives
      1. 7.2.1 Graphene
      2. 7.2.2 Graphene oxide
      3. 7.2.3 Reduced graphene oxide
    3. 7.3 Graphene based sensors
      1. 7.3.1 Graphene based SERS sensor
      2. 7.3.2 Graphene based electrochemical sensor
      3. 7.3.3 Graphene based fluorescence sensor
      4. 7.3.4 Graphene based FET sensor
    4. 7.4 Classification of carbon nanotubes
      1. 7.4.1 Multi–walled carbon nanotubes
      2. 7.4.2 Single–walled carbon nanotubes
    5. 7.5 Application of carbon nanotubes–based sensors
      1. 7.5.1 Carbon nanotubes-based SERS sensors
      2. 7.5.2 Carbon nanotubes based electrochemical sensors
      3. 7.5.3 Carbon nanotubes-based fluorescence sensors
      4. 7.5.4 Carbon nanotubes-based FET sensor
    6. 7.6 Conclusion
    7. Acknowledgements
    8. References
  17. Chapter 8 Intelligent flow sensor using artificial neural networks
    1. 8.1 Introduction: background of flow measurement and taxonomy
    2. 8.2 Theory of the control valve
    3. 8.3 The multilayer perceptron neural network
    4. 8.4 FPGA implementation
    5. 8.5 FPGA implementation of the sigmoid function
    6. 8.6 FPGA Implementation of the MLP neural network
    7. 8.7 Discussion
    8. 8.8 Summary
    9. Bibliography
  18. Chapter 9 Smart sensor systems for military and aerospace applications
    1. 9.1 Introduction
    2. 9.2 Requirement for an ideal design of smart sensor systems
    3. 9.3 HEMT for RADAR application
    4. 9.4 Photodetectors in military applications
      1. 9.4.1 Photoresistors
      2. 9.4.2 Photodiodes
      3. 9.4.3 Infrared sensors
    5. 9.5 Solar blind photodetectors for military applications
    6. 9.6 Infrared photodetectors as night vision devices
    7. 9.7 Conclusion
    8. References
  19. Chapter 10 Magnetic biosensors: Need and progress
    1. 10.1 Basics of biosensors
    2. 10.2 Existing technologies of biosensing
      1. 10.2.1 Hemagglutination Assay (HA)
      2. 10.2.2 Enzyme-linked immunosorbent assay (ELISA)
      3. 10.2.3 Polymerase Chain Reaction (PCR)
    3. 10.3 Advantages and limitations of the existing methods
      1. 10.3.1 Characteristics of a biosensor
      2. 10.3.2 Selectivity
      3. 10.3.3 Reproducibility
      4. 10.3.4 Stability
      5. 10.3.5 Sensitivity
      6. 10.3.6 Linearity
    4. 10.4 Principles of magnetic biosensing
      1. 10.4.1 Magnetic nanoparticles
      2. 10.4.2 Classification of MNPs based on their magnetic nature
      3. 10.4.3 Need for magnetic nanosensors
    5. 10.5 Types of biorecognition elements
      1. 10.5.1 Enzymatic biosensors
      2. 10.5.2 Biosensors using DNA and RNA
      3. 10.5.3 Biosensors using antibody
      4. 10.5.4 Aptasensors
      5. 10.5.5 Peptide based molecular sensors
    6. 10.6 Principles of magnetic nanosensors
      1. 10.6.1 Magnetoresistance
      2. 10.6.2 The Hall effect sensors
      3. 10.6.3 Anisotropic Magnetoresistance Sensors (AMR)
      4. 10.6.4 Giant Magnetoresistance Sensors (GMR)
      5. 10.6.5 Tunneling Magneto Resistance (TMR)
      6. 10.6.6 Magnetic nanosensors for biomedical applications
      7. 10.6.7 Magnetic Relaxation Immunoassays (MARIA) using Fluxgate Sensor
      8. 10.6.8 Planar Hall Magnetoresistive (PHR) aptasensor for thrombin detection
      9. 10.6.9 Anisotropic Magnetoresistance (AMR) biosensors
      10. 10.6.10 Eigen Diagnosis Platform (EDP) using giant magnetoresistance biosensors
      11. 10.6.11 Tunneling Magnetoresistance (TMR) biosensors
      12. 10.7 Conclusion
    7. References
  20. Index

Product information

  • Title: Sensors for Next-Generation Electronic Systems and Technologies
  • Author(s): P. Uma Sathyakam, K. Lakshmi Narayana
  • Release date: May 2023
  • Publisher(s): CRC Press
  • ISBN: 9781000874624