"This practical guide to modern encryption breaks down the fundamental mathematical concepts at the heart of cryptography without shying away from meaty discussions of how they work. You’ll learn about authenticated encryption, secure randomness, hash functions, block ciphers, and public-key techniques such as RSA and elliptic curve cryptography.

You'll also learn:

• Key concepts in cryptography, such as computational security, attacker models, and forward secrecy• The strengths and limitations of the TLS protocol behind HTTPS secure websites• Quantum computation and post-quantum cryptography• About various vulnerabilities by examining numerous code examples and use cases• How to choose the best algorithm or protocol and ask vendors the right questions

Each chapter includes a discussion of common implementation mistakes using real-world examples and details what could go wrong and how to avoid these pitfalls.

Whether you’re a seasoned practitioner or a beginner looking to dive into the field, Serious Cryptography will provide a complete survey of modern encryption and its applications."

- Cover Page
- Title Page
- Copyright Page
- Brief Contents
- Contents in Detail
- Foreword
- Preface
- Abbreviations
- Chapter 1: Encryption
- Chapter 2: Randomness
- Chapter 3: Cryptographic Security
- Chapter 4: Block Ciphers
- Chapter 5: Stream Ciphers
- Chapter 6: Hash Functions
- Chapter 7: Keyed Hashing
- Chapter 8: Authenticated Encryption
- Chapter 9: Hard Problems
- Chapter 10: RSA
- Chapter 11: Diffie–Hellman
- Chapter 12: Elliptic Curves
- Chapter 13: TLS
- Chapter 14: Quantum and Post-Quantum
- Index
- Resources