Skip to Content
Sharing Data and Models in Software Engineering
book

Sharing Data and Models in Software Engineering

by Tim Menzies, Ekrem Kocaguneli, Burak Turhan, Leandro Minku, Fayola Peters
December 2014
Beginner to intermediate content levelBeginner to intermediate
406 pages
15h 38m
English
Morgan Kaufmann

Overview

Data Science for Software Engineering: Sharing Data and Models presents guidance and procedures for reusing data and models between projects to produce results that are useful and relevant. Starting with a background section of practical lessons and warnings for beginner data scientists for software engineering, this edited volume proceeds to identify critical questions of contemporary software engineering related to data and models. Learn how to adapt data from other organizations to local problems, mine privatized data, prune spurious information, simplify complex results, how to update models for new platforms, and more. Chapters share largely applicable experimental results discussed with the blend of practitioner focused domain expertise, with commentary that highlights the methods that are most useful, and applicable to the widest range of projects. Each chapter is written by a prominent expert and offers a state-of-the-art solution to an identified problem facing data scientists in software engineering. Throughout, the editors share best practices collected from their experience training software engineering students and practitioners to master data science, and highlight the methods that are most useful, and applicable to the widest range of projects.

  • Shares the specific experience of leading researchers and techniques developed to handle data problems in the realm of software engineering
  • Explains how to start a project of data science for software engineering as well as how to identify and avoid likely pitfalls
  • Provides a wide range of useful qualitative and quantitative principles ranging from very simple to cutting edge research
  • Addresses current challenges with software engineering data such as lack of local data, access issues due to data privacy, increasing data quality via cleaning of spurious chunks in data
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Developing High Quality Data Models

Developing High Quality Data Models

Matthew West
Data Mesh in Practice

Data Mesh in Practice

Max Schultze, Arif Wider

Publisher Resources

ISBN: 9780124172951