Chapter 14

Building Smarter Transfer Learners

Abstract

In this part of the book Data Science for Software Engineering: Sharing Data and Models, we show that sharing all data is less useful that sharing just the relevant data. There are several useful methods for finding those relevant data regions including simple nearest neighbor, or kNN, algorithms; clustering (to optimize subsequent kNN); and pruning away “bad” regions. Also, we show that with clustering, it is possible to repair missing data in project records.

Name:TEAK
Also known as:TEAK could be categoried as a transfer learner or a relevancy filter. It could also be categorized as an instance-based (or case-based) reasoner.
Intent:Generating software effort estimates, when there is ...

Get Sharing Data and Models in Software Engineering now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.