Chapter 17

Compensating for Missing Data

Abstract

In this part of the book Data Science for Software Engineering: Sharing Data and Models, we show that sharing all data is less useful that sharing just the relevant data. There are several useful methods for finding those relevant data regions including simple nearest neighbor, or kNN, algorithms; clustering (to optimize subsequent kNN); and pruning away “bad” regions. Also, we show that with clustering, it is possible to repair missing data in project records.

Name:POP1
Also known as:Reverse nearest neighbor, instance selection.
Intent:When some columns of data are unavailable, use other columns to “stand in” for the missing values.
Motivation:In the early stages of a software project, we cannot ...

Get Sharing Data and Models in Software Engineering now with O’Reilly online learning.

O’Reilly members experience live online training, plus books, videos, and digital content from 200+ publishers.