Contents

Preface

About the Author

1   Introduction

References

2   Material Properties and Technologies

2.1 SiGe and Group III/V Compound Semiconductors

2.1.1   Bandgaps and Lattice Constants

2.1.2   Velocity Overshoot

2.1.3   Bandgap Discontinuity

2.1.4   Bandgap Narrowing

2.1.5   Strained Layer and Critical Thickness

2.1.6   Electron Mobility

2.1.7   Hole Drift Mobility

2.2 Heterojunction Technologies

2.2.1   Vapor-Phase Epitaxy

2.2.2   Molecular Beam Epitaxy

2.2.3   Gas-Source MBE and Metal-Organic MBE

2.3 Device Fabrication

2.3.1   SiGe HBTs

2.3.2   AlGaAs/GaAs HBTs

2.3.3   InP HBTs

References

Problems

3   DC Performance

3.1 General Structures and Steady-State Behavior

3.1.1   Electron and Hole Currents

3.1.2   Abrupt and Graded Heterojunctions

3.1.3   Undoped Setback Layer

3.1.4   Graded-Base HBTs

3.1.5   Double Heterojunctions

3.1.6   Electron Quasi-Fermi Level Splitting

3.1.7   Collector–Emitter Offset Voltage

3.1.8   Early Voltage

3.1.9   Bias-Dependent Base Resistance

3.1.10  High Injection Barrier Effect

3.2 SiGe Heterojunction Bipolar Transistors

3.2.1   Current Gain and Early Voltage Product

3.2.2   Temperature-Dependent Current Gain

3.2.3   Current Gain Roll-off in Graded SiGe Base

3.2.4   Early Voltage, Including Recombination in the SiGe Base

3.2.5   Inverse Base Width Modulation Effect

3.3 III/V Compound Heterojunction Bipolar Transistors

3.3.1   Self-Heating Effect

3.3.2   Recombination Currents

3.3.3   Temperature-Dependent Current Gain of AlGaAs/GaAs HBTs

3.3.4   Temperature-Dependent ...

Get SiGe, GaAs, and InP Heterojunction Bipolar Transistors now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.