3Self‐Sustaining Wireless Neighborhood‐Area Network Design

Wireless technology has been widely considered for last‐mile communications in the smart grid, because of its growing performance and the relatively low cost but more flexible nature. In the advanced metering infrastructure (AMI), both home‐area networks (HANs) and neighborhood‐area networks (NANs) can be deployed using wireless technologies. While HAN has been widely studied using either IEEE 802.11 (Wi‐Fi) or IEEE 802.15.4 (ZigBee) due to its small coverage and low data rate transmission [53, 54], the standalone NAN should be explored. In this chapter, we propose a self‐sustaining wireless NAN design for AMI in the smart grid. We then propose an optimization approach to achieve minimum total cost for the design. To optimize the system, we first study the optimal number of gateway DAPs. Then we propose two geographical deployment methods in order to achieve fairness for customers. To further enhance fairness, we set different transmission power levels for gateway DAPs. We also achieve the global uplink transmission power efficiency. Compared with the existing game theoretical approach, our approach can increase the energy efficiency of the system. To quickly approach the optimal result, we propose an algorithm for which the computational complexity depends solely on solving a linear system.

3.1 Overview of the Proposed NAN

3.1.1 Background and Motivation of a Self‐Sustaining Wireless NAN

In a neighborhood powered by the smart ...

Get Smart Grid Communication Infrastructures now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.