Solid State Electronic Devices, 7th Edition

Book description

Solid State Electronic Devices is intended for undergraduate electrical engineering students or for practicing engineers and scientists interested in updating their understanding of modern electronics

One of the most widely used introductory books on semiconductor materials, physics, devices and technology, Solid State Electronic Devices aims to: 1) develop basic semiconductor physics concepts, so students can better understand current and future devices; and 2) provide a sound understanding of current semiconductor devices and technology, so that their applications to electronic and optoelectronic circuits and systems can be appreciated. Students are brought to a level of understanding that will enable them to read much of the current literature on new devices and applications.

Teaching and Learning Experience

This program will provide a better teaching and learning experience–for you and your students. It will help:

  • Provide a Sound Understanding of Current Semiconductor Devices: With this background, students will be able to see how their applications to electronic and optoelectronic circuits and systems are meaningful.

  • Incorporate the Basics of Semiconductor Materials and Conduction Processes in Solids: Most of the commonly used semiconductor terms and concepts are introduced and related to a broad range of devices.

  • Develop Basic Semiconductor Physics Concepts: With this background, students will be better able to understand current and future devices.

Table of contents

  1. Solid State Electronic Devices
  2. Solid State Electronic Devices
  3. Contents
  4. Preface
    1. Goals
    2. What is New in this Edition
    3. Reading Lists
    4. Problems
    5. Units
    6. Presentation
  5. Prentice Hall Series In Solid State Physical Electronics
  6. About the Authors
  7. Solid State Electronic Devices
  8. Chapter 1 Crystal Properties and Growth of Semiconductors
    1. Objectives
    2. 1.1 Semiconductor Materials
    3. 1.2 Crystal Lattices
      1. 1.2.1 Periodic Structures
      2. 1.2.2 Cubic Lattices
        1. Solution
      3. 1.2.3 Planes and Directions
      4. 1.2.4 The Diamond Lattice
        1. Solution
    4. 1.3 Bulk Crystal Growth
      1. 1.3.1 Starting Materials
      2. 1.3.2 Growth of Single-​Crystal Ingots
      3. 1.3.3 Wafers
      4. 1.3.4 Doping
        1. Solution
    5. 1.4 Epitaxial Growth
      1. 1.4.1 Lattice-​Matching in Epitaxial Growth
      2. 1.4.2 Vapor-​Phase Epitaxy
      3. 1.4.3 Molecular Beam Epitaxy
    6. 1.5 Wave Propagation in Discrete, Periodic Structures
    7. Summary
    8. Problems
    9. Reading List
    10. Self Quiz
  9. Chapter 2 Atoms and Electrons
    1. Objectives
    2. 2.1 Introduction to Physical Models
    3. 2.2 Experimental Observations
      1. 2.2.1 The Photoelectric Effect
      2. 2.2.2 Atomic Spectra
    4. 2.3 The Bohr Model
      1. Solution
    5. 2.4 Quantum Mechanics
      1. 2.4.1 Probability and the Uncertainty Principle
      2. 2.4.2 The Schrödinger Wave Equation
      3. 2.4.3 Potential Well Problem
        1. Solution
      4. 2.4.4 Tunneling
    6. 2.5 Atomic Structure and the Periodic Table
      1. 2.5.1 The Hydrogen Atom
      2. 2.5.2 The Periodic Table
    7. Summary
    8. Problems
    9. Reading List
    10. Self Quiz
  10. Chapter 3 Energy Bands and Charge Carriers in Semiconductors
    1. Objectives
    2. 3.1 Bonding Forces and Energy Bands in Solids
      1. 3.1.1 Bonding Forces in Solids
      2. 3.1.2 Energy Bands
      3. 3.1.3 Metals, Semiconductors, and Insulators
      4. 3.1.4 Direct and Indirect Semiconductors
      5. 3.1.5 Variation of Energy Bands with Alloy Composition
    3. 3.2 Charge Carriers in Semiconductors
      1. 3.2.1 Electrons and Holes
        1. Solution
      2. 3.2.2 Effective Mass
        1. Solution
      3. 3.2.3 Intrinsic Material
      4. 3.2.4 Extrinsic Material
        1. Solution
      5. 3.2.5 Electrons and Holes in Quantum Wells
    4. 3.3 Carrier Concentrations
      1. 3.3.1 The Fermi Level
      2. 3.3.2 Electron and Hole Concentrations at Equilibrium
        1. Solution
        2. Solution
      3. 3.3.3 Temperature Dependence of Carrier Concentrations
      4. 3.3.4 Compensation and Space Charge Neutrality
    5. 3.4 Drift of Carriers in Electric and Magnetic Fields
      1. 3.4.1 Conductivity and Mobility
        1. Solution
      2. 3.4.2 Drift and Resistance
      3. 3.4.3 Effects of Temperature and Doping on Mobility
        1. Example 3–7
          1. Solution
      4. 3.4.4 High-Field Effects
      5. 3.4.5 The Hall Effect
        1. Solution
    6. 3.5 Invariance of the Fermi Level at Equilibrium
    7. Summary
    8. Problems
    9. Reading List
    10. Self Quiz
  11. Chapter 4 Excess Carriers in Semiconductors
    1. Objectives
    2. 4.1 Optical Absorption1
    3. 4.2 Luminescence
      1. 4.2.1 Photoluminescence
        1. Solution
      2. 4.2.2 Electroluminescence
    4. 4.3 Carrier Lifetime and Photoconductivity
      1. 4.3.1 Direct Recombination of Electrons and Holes
      2. 4.3.2 Indirect Recombination; Trapping
      3. 4.3.3 Steady State Carrier Generation; Quasi-​Fermi Levels
      4. 4.3.4 Photoconductive Devices
    5. 4.4 Diffusion of Carriers
      1. 4.4.1 Diffusion Processes
      2. 4.4.2 Diffusion and Drift of Carriers; Built-​in Fields
      3. 4.4.3 Diffusion and Recombination; The Continuity Equation
      4. 4.4.4 Steady State Carrier Injection; Diffusion Length
        1. Solution
      5. 4.4.5 The Haynes–​Shockley Experiment
        1. Solution
      6. 4.4.6 Gradients in the Quasi-​Fermi Levels
    6. Summary
    7. Problems
    8. Reading List
    9. Self Quiz
  12. Chapter 5 Junctions
    1. Objectives
    2. 5.1 Fabrication of p-n Junctions
      1. 5.1.1 Thermal Oxidation
      2. 5.1.2 Diffusion
      3. 5.1.3 Rapid Thermal Processing
      4. 5.1.4 Ion Implantation
      5. 5.1.5 Chemical Vapor Deposition (CVD)
      6. 5.1.6 Photolithography
      7. 5.1.7 Etching
      8. 5.1.8 Metallization
    3. 5.2 Equilibrium Conditions
      1. 5.2.1 The Contact Potential
        1. Example 5–1
          1. Solution
      2. 5.2.2 Equilibrium Fermi Levels
      3. 5.2.3 Space Charge at a Junction
        1. Solution
    4. 5.3 Forward- and Reverse-Biased Junctions; Steady State Conditions
      1. 5.3.1 Qualitative Description of Current Flow at a Junction
      2. 5.3.2 Carrier Injection
        1. Solution
      3. 5.3.3 Reverse Bias
        1. Solution
    5. 5.4 Reverse-Bias Breakdown
      1. 5.4.1 Zener Breakdown
      2. 5.4.2 Avalanche Breakdown
      3. 5.4.3 Rectifiers
      4. 5.4.4 The Breakdown Diode
    6. 5.5 Transient and A-C Conditions
      1. 5.5.1 Time Variation of Stored Charge
      2. 5.5.2 Reverse Recovery Transient
        1. Solution
      3. 5.5.3 Switching Diodes
      4. 5.5.4 Capacitance of p-n Junctions
        1. Solution
      5. 5.5.5 The Varactor Diode
    7. 5.6 Deviations from the Simple Theory
      1. 5.6.1 Effects of Contact Potential on Carrier Injection
      2. 5.6.2 Recombination and Generation in the Transition Region
      3. 5.6.3 Ohmic Losses
      4. 5.6.4 Graded Junctions
    8. 5.7 Metal–Semiconductor Junctions
      1. 5.7.1 Schottky Barriers
      2. 5.7.2 Rectifying Contacts
      3. 5.7.3 Ohmic Contacts
      4. 5.7.4 Typical Schottky Barriers
    9. 5.8 Heterojunctions
      1. Solution
    10. Summary
    11. Problems
    12. Reading List
    13. Self Quiz
  13. Chapter 6 Field-Effect Transistors
    1. Objectives
    2. 6.1 Transistor Operation
      1. 6.1.1 The Load Line
      2. 6.1.2 Amplification and Switching
    3. 6.2 The Junction Fet
      1. 6.2.1 Pinch-off and Saturation
      2. 6.2.2 Gate Control
      3. 6.2.3 Current–​Voltage Characteristics
    4. 6.3 The Metal–​Semiconductor Fet
      1. 6.3.1 The GaAs MESFET
      2. 6.3.2 The High Electron Mobility Transistor (HEMT)
      3. 6.3.3 Short Channel Effects
    5. 6.4 The Metal–​Insulator–​Semiconductor Fet
      1. 6.4.1 Basic Operation and Fabrication
      2. 6.4.2 The Ideal MOS Capacitor
      3. 6.4.3 Effects of Real Surfaces
        1. Work Function Difference
        2. Interface Charge
      4. 6.4.4 Threshold Voltage
        1. Solution
      5. 6.4.5 MOS Capacitance–​Voltage Analysis
      6. 6.4.6 Time-Dependent Capacitance Measurements
      7. 6.4.7 Current–​Voltage Characteristics of MOS Gate Oxides
    6. 6.5 The Mos Field-Effect Transistor
      1. 6.5.1 Output Characteristics
      2. 6.5.2 Transfer Characteristics
        1. Solution
      3. 6.5.3 Mobility Models
      4. 6.5.4 Short Channel MOSFET I–​V Characteristics
      5. 6.5.5 Control of Threshold Voltage
        1. Choice of Gate Electrode
        2. Control of Ci
        3. Threshold Adjustment by Ion Implantation
      6. 6.5.6 Substrate Bias Effects—​the “Body” Effect
        1. Solution
      7. 6.5.7 Subthreshold Characteristics
      8. 6.5.8 Equivalent Circuit for the MOSFET
      9. 6.5.9 MOSFET Scaling and Hot Electron Effects
      10. 6.5.10 Drain-Induced Barrier Lowering
      11. 6.5.11 Short Channel Effect and Narrow Width Effect
      12. 6.5.12 Gate-Induced Drain Leakage
    7. 6.6 Advanced Mosfet Structures
      1. 6.6.1 Metal Gate-High-k
      2. 6.6.2 Enhanced Channel Mobility Materials and Strained Si FETs
      3. 6.6.3 SOI MOSFETs and FinFETs
    8. Summary
    9. Problems
    10. Reading List
    11. Self Quiz
  14. Chapter 7 Bipolar Junction Transistors
    1. Objectives
    2. 7.1 Fundamentals of BJT Operation
    3. 7.2 Amplification with BJTS
      1. Example 7–1  
        1. Solution
    4. 7.3 BJT Fabrication
    5. 7.4 Minority Carrier Distributions and Terminal Currents
      1. 7.4.1 Solution of the Diffusion Equation in the Base Region
      2. 7.4.2 Evaluation of the Terminal Currents
        1. Example 7–2  
          1. Solution
      3. 7.4.3 Approximations of the Terminal Currents
      4. 7.4.4 Current Transfer Ratio
        1. Solution
    6. 7.5 Generalized Biasing
      1. 7.5.1 The Coupled-Diode Model
        1. Example 7–4  
          1. Solution
      2. 7.5.2 Charge Control Analysis
    7. 7.6 Switching
      1. 7.6.1 Cutoff
      2. 7.6.2 Saturation
      3. 7.6.3 The Switching Cycle
      4. 7.6.4 Specifications for Switching Transistors
    8. 7.7 Other Important Effects
      1. 7.7.1 Drift in the Base Region
      2. 7.7.2 Base Narrowing
      3. 7.7.3 Avalanche Breakdown
      4. 7.7.4 Injection Level; Thermal Effects
      5. 7.7.5 Base Resistance and Emitter Crowding
      6. 7.7.6 Gummel–Poon Model
      7. 7.7.7 Kirk Effect
    9. 7.8 Frequency Limitations of Transistors
      1. 7.8.1 Capacitance and Charging Times
      2. 7.8.2 Transit Time Effects
      3. 7.8.3 Webster Effect
      4. 7.8.4 High-Frequency Transistors
    10. 7.9 Heterojunction Bipolar Transistors
    11. Summary
    12. Problems
    13. Reading List
    14. Self Quiz
  15. Chapter 8 Optoelectronic Devices
    1. Objectives
    2. 8.1 Photodiodes
      1. 8.1.1 Current and Voltage in an Illuminated Junction
        1. Solution
      2. 8.1.2 Solar Cells
        1. Solution
      3. 8.1.3 Photodetectors
      4. 8.1.4 Gain, Bandwidth, and Signal-​to-​Noise Ratio of Photodetectors
    3. 8.2 Light-​Emitting Diodes
      1. 8.2.1 Light-​Emitting Materials
      2. 8.2.2 Fiber-​Optic Communications
        1. Solution
    4. 8.3 Lasers
    5. 8.4 Semiconductor Lasers
      1. 8.4.1 Population Inversion at a Junction
      2. 8.4.2 Emission Spectra for p-​n Junction Lasers
      3. 8.4.3 The Basic Semiconductor Laser
      4. 8.4.4 Heterojunction Lasers
        1. Separate Confinement and Graded Index Channels.
        2. Vertical Cavity Surface-​Emitting Lasers (VCSELs).
      5. 8.4.5 Materials for Semiconductor Lasers
      6. 8.4.6 Quantum Cascade Lasers
    6. Summary
    7. Problems
    8. Reading List
    9. Self Quiz
  16. Chapter 9 Integrated Circuits
    1. Objectives
    2. 9.1 Background
      1. 9.1.1 Advantages of Integration
      2. 9.1.2 Types of Integrated Circuits
    3. 9.2 Evolution of Integrated Circuits
    4. 9.3 Monolithic Device Elements
      1. 9.3.1 CMOS Process Integration
      2. 9.3.2 Integration of Other Circuit Elements
        1. Diodes.
        2. Resistors.
        3. Capacitors.
        4. Inductors.
        5. Contacts and Interconnections.
    5. 9.4 Charge Transfer Devices
      1. 9.4.1 Dynamic Effects in MOS Capacitors
      2. 9.4.2 The Basic CCD
      3. 9.4.3 Improvements on the Basic Structure
      4. 9.4.4 Applications of CCDs
    6. 9.5 Ultra Large-​ Scale Integration (ULSI)
      1. 9.5.1 Logic Devices
      2. 9.5.2 Semiconductor Memories
        1. SRAMs.
        2. DRAMs.
        3. Flash Memories.
    7. 9.6 Testing, Bonding, and Packaging
      1. 9.6.1 Testing
      2. 9.6.2 Wire Bonding
      3. 9.6.3 Flip-​Chip Techniques
      4. 9.6.4 Packaging
    8. Summary
    9. Problems
    10. Reading List
    11. Self Quiz
  17. Chapter 10 High-Frequency, High-Power and Nanoelectronic Devices
    1. Objectives
    2. 10.1 Tunnel Diodes
      1. 10.1.1 Degenerate Semiconductors
    3. 10.2 The Impatt Diode
    4. 10.3 The Gunn Diode
      1. 10.3.1 The Transferred-Electron Mechanism
      2. 10.3.2 Formation and Drift of Space Charge Domains
    5. 10.4 The P-N-P-N Diode
      1. 10.4.1 Basic Structure
      2. 10.4.2 The Two-Transistor Analogy
      3. 10.4.3 Variation of α with Injection
      4. 10.4.4 Forward-Blocking State
      5. 10.4.5 Conducting State
      6. 10.4.6 Triggering Mechanisms
    6. 10.5 The Semiconductor- Controlled Rectifier
      1. 10.5.1 Turning Off the SCR
    7. 10.6 Insulated-Gate Bipolar Transistor
    8. 10.7 Nanoelectronic Devices
      1. 10.7.1 Zero-Dimensional Quantum Dots
      2. 10.7.2 One-Dimensional Quantum Wires
      3. 10.7.3 Two-Dimensional Layered Crystals
      4. 10.7.4 Spintronic Memory
      5. 10.7.5 Nanoelectronic Resistive Memory
    9. Summary
    10. Problems
    11. Reading List
    12. Self Quiz
  18. Appendix I Definitions of Commonly Used Symbols1
  19. Appendix II Physical Constants and Conversion Factors1
  20. Appendix III Properties of Semiconductor Materials
  21. Appendix IV Derivation of the Density of States in the Conduction Band
  22. Appendix V Derivation of Fermi–Dirac Statistics
  23. Appendix VI Dry and Wet Thermal Oxide Thickness Grown on Si (100) as a Function of Time and Temperature1
  24. Appendix VII Solid Solubilities of Impurities in Si1
  25. Appendix VIII Diffusivities of Dopants in Si and SiO21
  26. Appendix IX Projected Range and Straggle as Function of Implant Energy in Si1
  27. Answers to Selected Self Quiz Questions
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
  28. Index
    1. A
    2. B
    3. C
    4. D
    5. E
    6. F
    7. G
    8. H
    9. I
    10. J
    11. K
    12. L
    13. M
    14. N
    15. O
    16. P
    17. Q
    18. R
    19. S
    20. T
    21. U
    22. V
    23. W
    24. X
    25. Z
  29. Semiconductor Physics
    1. p-n Junctions
    2. MOS-n Channel
    3. BJT-p-n-p

Product information

  • Title: Solid State Electronic Devices, 7th Edition
  • Author(s): Ben Streetman, Sanjay Banerjee
  • Release date: March 2014
  • Publisher(s): Pearson
  • ISBN: 9780137577866