Chapter 14. Distributed Shared Variables

In addition to the Resilient Distributed Dataset (RDD) interface, the second kind of low-level API in Spark is two types of “distributed shared variables”: broadcast variables and accumulators. These are variables you can use in your user-defined functions (e.g., in a map function on an RDD or a DataFrame) that have special properties when running on a cluster. Specifically, accumulators let you add together data from all the tasks into a shared result (e.g., to implement a counter so you can see how many of your job’s input records failed to parse), while broadcast variables let you save a large value on all the worker nodes and reuse it across many Spark actions without re-sending it to the cluster. This chapter discusses some of the motivation for each of these variable types as well as how to use them.

Broadcast Variables

Broadcast variables are a way you can share an immutable value efficiently around the cluster without encapsulating that variable in a function closure. The normal way to use a variable in your driver node inside your tasks is to simply reference it in your function closures (e.g., in a map operation), but this can be inefficient, especially for large variables such as a lookup table or a machine learning model. The reason for this is that when you use a variable in a closure, it must be deserialized on the worker nodes many times (one per task). Moreover, if you use the same variable in multiple Spark actions and ...

Get Spark: The Definitive Guide now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.