1. Aboyomi, K., Gelman, A., and Levy, M. (2008). Diagnostics for multiple imputations. Appl. Stat. 57 (3): 273–291.
  2. Afifi, A.A. and Elashoff, R.M. (1966). Missing observations in multivariate statistics 1: review of the literature. J. Am. Stat. Assoc. 61: 595–604.
  3. Aitkin, M. (1999). A general maximum likelihood analysis of variance components in generalized linear models. Biometrics 55: 117–128.
  4. Aitkin, M. and Rubin, D.B. (1985). Estimation and hypothesis testing in finite mixture models. J. R. Stat. Soc. B 47: 67–75.
  5. Aitkin, M. and Wilson, G.T. (1980). Mixture models, outliers, and the EM algorithm. Technometrics 22: 325–331.
  6. Albert, P.S., Follman, D.A., Wang, S.A., and Suh, E.B. (2002). A latent autoregressive model for longitudinal binary data subject to informative missingness. Biometrics 58 (3): 631–664.
  7. Allan, F.G. and Wishart, J. (1930). A method of estimating the yield of a missing plot in field experiments. J. Agric. Sci. 20: 399–406.
  8. Amemiya, T. (1984). Tobit models: a survey. J. Econom. 24: 3–61.
  9. Anderson, R.L. (1946). Missing plot techniques. Biometrics 2: 41–47.
  10. Anderson, T.W. (1957). Maximum likelihood estimates for the multivariate normal distribution when some observations are missing. J. Am. Stat. Assoc. 52: 200–203.
  11. Anderson, T.W. (1965). An Introduction to Multivariate Statistical Analysis. New York: Wiley.
  12. Andrews, D.F., Bickel, P.J., Hampel, F.R. et al. (1972). Robust Estimates of Location: Survey and Advances. Princeton, NJ: Princeton University ...

Get Statistical Analysis with Missing Data., 3rd Edition now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.