Chapter 21

Ten Statistical and Graphical Tips and Traps


Determining significance

Being wary of graphs

Being cautious with regression

Using concepts carefully

The world of statistics is full of pitfalls, but it’s also full of opportunities. Whether you’re a user of statistics or someone who has to interpret them, it’s possible to fall into the pitfalls. It’s also possible to walk around them. Here are ten tips and traps from the areas of hypothesis testing, regression, correlation, and graphs.

Significant Doesn’t Always Mean Important

As I say earlier in the book, significance is, in many ways, a poorly chosen term. When a statistical test yields a significant result, and the decision is to reject H0, that doesn’t guarantee that the study behind the data is an important one. Statistics can only help decision making about numbers and inferences about the processes that produced them. They can’t make those processes important or earth shattering. Importance is something you have to judge for yourself — and no statistical test can do that for you.

Trying to Not Reject a Null Hypothesis Has a Number of Implications

Let me tell you a story: Some years ago, an industrial firm was trying to show that it was finally in compliance with environmental clean-up laws. The company took numerous measurements of the pollution in the body of water surrounding its factory, compared the measurements with a null hypothesis-generated set of expectations, and found that it couldn’t ...

Get Statistical Analysis with Excel For Dummies, 4th Edition now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.