3.1 IntroductionRandom Generators of Common Probability Distributions in R3.2 The Inverse Transform Method3.2.1 Inverse Transform Method, Continuous Case3.2.2 Inverse Transform Method, Discrete Case3.3 The Acceptance-Rejection MethodThe Acceptance-Rejection Method3.4 Transformation Methods3.5 Sums and MixturesConvolutionsMixtures3.6 Multivariate Distributions3.6.1 Multivariate Normal DistributionMethod for generating multivariate normal samplesSpectral decomposition method for generating Nd(µ, ∑) samplesSVD Method of generating Nd(µ, Σ) samplesCholeski factorization method of generating Nd(µ, Σ) samplesComparing Performance of Generators3.6.2 Mixtures of Multivariate NormalsTo generate a random sample from pNd(µ1, Σ1) + (1 − p)Nd(µ2, Σ2)3.6.3 Wishart Distribution3.6.4 Uniform Distribution on the d-SphereAlgorithm to generate uniform variates on the d-Sphere3.7 Stochastic ProcessesPoisson ProcessesAlgorithm for simulating a homogeneous Poisson process on an interval [0, t0] by generating interarrival times.Nonhomogeneous Poisson ProcessesAlgorithm for simulating a nonhomogeneous Poisson process on an interval [0, t0] by sampling from a homogeneous Poisson process.Renewal ProcessesSymmetric Random WalkAlgorithm to simulate the state Sn of a symmetric random walkPackages and Further ReadingExercisesFigure 3.1Figure 3.2Figure 3.3Figure 3.4Figure 3.5Figure 3.6Figure 3.7Figure 3.8Figure 3.9Figure 3.10Figure 3.11Table 3.1